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In this study we have theoretically investigated the effect of parallel superposition
of modulation on the stability of single-layer Newtonian and viscoelastic flows down
an inclined plane. Specifically, a spectrally based numerical technique in conjunction
with Floquet theory has been used to investigate the linear stability of this class of
flows. Based on these analyses we have demonstrated that parallel superposition of
modulation can be used to stabilize or destabilize flow of Newtonian and viscoelastic
fluids down an inclined plane. In general at low Reynolds number Re (i.e. O(1))
and in the limit of long and O(1) waves the effect of dynamic modulation on
the stability of viscoelastic flows is much more pronounced; however, relatively large
modulation amplitudes are required to achieve significant stabilization/destabilization.
In addition, the dependence of the most dominant modulation frequencies on Re and
the Weissenberg number We have been identified. Specifically, it has been shown
that for Newtonian flows low-frequency modulations are destabilizing and the most
dominant modulation frequency scales with 1/Re. On the other hand, for viscoelastic
flows in the absence of fluid inertia low-frequency modulations are stabilizing and
the most dominant modulation frequency scales with 1/We. In finite-Re viscoelastic
flows the most dominant destabilizing modulation frequency scales with 1/Re while
the most stabilizing modulation frequency scales with 1/WeRe. Finally, it has been
demonstrated that the mechanism of both purely elastic and inertial instabilities in
flows down an inclined plane is unchanged in the presence of dynamic modulation.

1. Introduction
The viscoelastic nature of most polymeric fluids can significantly affect flow in-

stability in flows that are unstable due to capillary or inertial forces. In addition,
viscoelastic forces can give rise to new mechanisms of instability that are absent in
flow of Newtonian fluids (Shaqfeh 1996). In the past decade a number of studies
have focused on elastic instabilities in simple shear flows such as those occurring
in viscometric flows (Joo & Shaqfeh 1991, 1992a, b). These studies have identified
various mechanisms for viscoelastic instabilities which hopefully can be used to
provide insight into instabilities occurring in more complex geometries (Shaqfeh
1995; McKinley, Pakdel & Oztekin 1996).

Interfacial or free-surface instabilities have not received as much attention as bulk
viscoelastic instabilities. However, recent studies (Ganpule & Khomami 1998, 1999a, b)
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have clearly demonstrated that the mechanism which gives rise to viscometric shear
flow instabilities (i.e. coupling between normal stresses and streamline curvature) does
not play a significant role in interfacial instabilities that occur in multilayer pressure or
drag-driven channel flows. Moreover, the mechanism of many viscoelastic instabilities
observed in free-surface flows such as in coating operations is not well understood.
The free-surface flow of viscoelastic fluids is of great importance in many industrial
applications when solids are coated with polymeric films and an understanding of the
mechanism that drives this class of instabilities is needed.

The simplicity of the base flow kinematics in inclined plane flows, in combination
with the fact that experimental evaluation of free-surface dynamics can be accurately
made, makes this class of flows ideal for studying free-surface instabilities. As a result,
the flow down an inclined plane has served as a paradigm in the investigation of New-
tonian (Benjamin 1957; Yih 1963; Gupta 1967) and viscoelastic (Lin 1967; Shaqfeh,
Larson & Frederickson 1989; Huang & Khomami 2000) free-surface instabilities.

The free-surface instability in flow down an inclined plane manifests itself in the
form of travelling waves. The instability of long-wavelength disturbances has been
studied by Yih (1963) and Benjamin (1957) for a Newtonian fluid and by Gupta
(1957) for the upper-convected Maxwell (UMC) fluid, and it has been shown that the
free surface can become unstable above a critical Reynolds number. In addition, it has
been shown that reducing the inclination angle and increasing the surface tension (i.e.
a minor influence in the limit of long-wave disturbances) increase the critical Reynolds
number, while increasing the fluid elasticity decreases the critical Reynolds number.

The asymptotic technique used in the above studies is only applicable to long-
wavelength disturbances. But in general the dominant mode of the instability can be
due to disturbances of any wavelength. To study the effect of arbitrary disturbances,
Lin (1967) constructed neutral stability diagrams for one-layer Newtonian flow down
an inclined plane using a numerical approach and demonstrated that long-wave
disturbances are the dominant mode of instability. Shaqfeh et al. (1989) performed a
similar study for flow of an Oldroyd-B fluid down an inclined plane and demonstrated
that even in the presence of fluid elasticity long waves are the most dangerous modes.
Moreover, they demonstrated that elastic effects are always destabilizing in the limit
of long waves but at intermediate wavenumbers they could be stabilizing at moderate
Reynolds numbers. Recently, Huang & Khomami (2000) have systematically studied
the free-surface and interfacial instabilities of multilayer viscoelastic flows down an
inclined plane using both asymptotic and numerical methods and have demonstrated
that free-surface and interfacial stability of this class of flows is a strong function of
Reynolds and Weissenberg numbers, Re, We, and elasticity and viscosity stratification.
In addition, the mechanism of free-surface instability of one-layer Newtonian and
viscoelastice flows down an inclined plane has been investigated and it has been
shown that in Newtonian flows the inertial instability is due to the perturbation shear
stresses at the free surface (Kelley et al. 1989; Smith 1990; Huang & Khomami 2000),
while in viscoelastic flows the elastic destabilization (i.e. in the limit of zero Reynolds
number) is due to the coupling of base flow and perturbation velocities and stresses
as well as their gradients at the free surface (Huang & Khomami 2000).

Unlike multilayer plane Poiseuille flows of viscoelastic fluids (Ganpule & Khomami
1998, 1999a, b) the interfacial and free-surface instability of viscoelastic fluids is not
a very sensitive function of the thickness of the individual layers. Specifically, for
Newtonian and viscoelastic flows in the limit of long waves, the interfacial instability
is independent of individual layer thicknesses (Huang & Khomami 2000). Hence,
one cannot effectively control interfacial and free-surface instabilities in flow down
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inclined planes by variation of the layer thicknesses, as is commonly done in multilayer
plane Poiseuille flows of viscoelastic liquids (Ganpule & Khomami 1998, 1999a, b).
Moreover, in multilayer flows of viscoelastic fluids it is very difficult to simultaneously
obtain a stable free surface and an interface (Huang & Khomami 2000); hence, it is
imperative that other strategies for control of free-surface and interfacial instabilities
be explored.

There are many examples where the addition of an oscillatory component to a
steady flow has been shown to reduce or enhance the stability of the flow. In fact, a
number of studies have shown that time-periodic modulation of the basic flow can
significantly influence the stability of bulk and free-surface flows. Grosch & Salwen
(1968) and von Kerzek (1982) have studied the effect of pressure drop modulations
on the linear stability of Newtonian plane Poiseuille flow and have demonstrated
that in a certain frequency and amplitude regime dynamic modulation can be used
to stabilize this flow. However, at very high or low frequencies the modulated flow
is less stable. In fact, these studies have demonstrated that pressure modulations can
alter the generation of shear waves in plane Poiseuille flow; hence, the frequency of
most effective modulation is of the same order of magnitude as the most dangerous
linearly unstable mode.

The effect of dynamic modulation on the stability of Newtonian flow down an
inclined plane has also been investigated. Yih (1968) considered the effect of modu-
lation of plate velocity on free-surface stability of a liquid film on a horizontal plate
and demonstrated that in a specific range of amplitudes and frequencies the flow
can become unstable due to the synchronous surface waves generated by oscillation
of the plate. Recently, Lin, Chen & Woods (1996) as well as Lin & Chen (1998)
have studied a similar problem but for a vertical plate and have shown that this
inherently unstable vertical film flow can be stabilized by modulation of the plate
with a certain frequency and amplitude. Although these studies have considered the
effect of dynamic modulation on single-layer Newtonian flows, the effect of modu-
lation frequency and amplitude on the stability of inclined plane flows of arbitrary
inclination angles have not been considered. Moreover, the dependence of the most
effective modulation frequencies on Re has not been investigated.

The studies on the effect of dynamic modulation of viscoelastic flows have been
limited to bulk flows. Specifically, Ramanan, Kumar & Graham (1999) and Ramanan
& Graham (2000) have considered the modulated viscoelastic Taylor–Couette flow. In
their studies the effect of axial and angular modulations of the inner cylinder on the
linear stability of this flow in the limit of small gap and vanishing Reynolds number
was examined. Their results demonstrate that the extent of stabilization achieved by
parallel superposition (i.e. angular modulation) is significantly smaller than that by
the axial modulation. In addition, they demonstrated that for parallel superposition
modulation frequencies near the inverse of the mean relaxation time of the fluid as
well as frequencies near zero lead to significant stabilization of the flow while for
axial modulation these frequencies lead to significant destabilization.

Clearly the studies mentioned above have demonstrated that dynamic modulation
can be effectively used to influence the stability to bulk and free-surface flows. In
addition, it has been shown that by combining the effect of fluid elasticity and dynamic
modulation one can influence the stability of bulk viscoelastic flows. However, the
influence of dynamic modulation on free-surface and interfacial stability of viscoelastic
fluids is not well understood. In this study the effect of dynamic modulation on the
stability characteristics of flow down an inclined plane is examined. The paper is
organized as follows. The problem formulation and the method of solution are
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Figure 1. Schematic of the single-layer flow down an inclined plane in the presence of
dynamic modulation.

summarized in § 2. In § 3 the results of our analyses are presented. Finally, the
conclusions are presented in § 4.

2. Problem formulation
Figure 1 depicts the flow geometry considered in this study. We consider single-layer

flow of Newtonian and viscoelastic fluids down an inclined plane.

2.1. Governing equations

The equations of motion and continuity can be expressed as

ρ
Du

Dt
= −∇P − ∇ · τ + ρg, (1)

∇ · u = 0, (2)

where u, P , g, and τ denote the velocity vector, isotropic pressure, gravitational
acceleration and the deviatoric stress tensor. Our aim in this study is to identify
the effect of dynamic modulation on the stability of viscoelastic flows down an in-
clined plane; hence, we have selected a relatively simple constitutive equation for the
polymeric stress (i.e. the upper-convected Maxwell (UCM) model). The UCM model
can be derived from a molecular theory in which the polymer molecules are modelled
as non-interacting Hookean elastic dumbbells (Bird et al. 1987). Although this model
gives rise to relatively simple material properties (i.e. constant viscosity and first
normal stress coefficient), it retains the essential physics necessary for investigating
the effects of fluid elasticity on stability of this class of flows.

The UCM model is given by

τ p + λτ p(1) = −ηpγ̇, (3)

where ηp and λ are the polymer viscosity and relaxation time,

X(1) =
∂X

∂t
+U · ∇X − (∇U )T · X − X · ∇U , (4)

and the deformation rate tensor is given by

γ̇ = ∇U + (∇U )T . (5)

The following set of dimensionless variables is introduced to non-dimensionalize
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the above equations:

x =
x1

d1

, y =
x2

d1

, Re =
ρg sin β d2

η
,

P =
P̄

η U0/d1

, τij =
τ̄ij

η U0/d1

, S =
σ

η U0

,

We =
λU0

d
, t =

t∗U0

d
, Ω =

ωd

U0

, Λ =
Q0

U0

,


(6)

where U0 is the velocity at the free surface, d is the thickness of the fluid layer, ρ is
the fluid density, σ is the surface tension, β is the inclination angle, and ω and Q0 are
the frequency and amplitude of the modulation velocity respectively.

2.2. Base flow

In the presence of dynamic modulation the base flow is time dependent. Hence, to
simplify the analysis, the base flow velocity and stress fields have been split into a
steady and a transient contribution,

u(y, t) = uss(y) + uD(y, t),

τ = τ ss(y) + τD(y, t),

p = pss(y) + pD(y, t).

 (7)

Upon substitution of the above equation into the governing equations, the following
set of equations is obtained:(

∂uss

∂x
+
∂vss

∂y

)
+

(
∂uD

∂x
+
∂vD

∂y

)
= 0, (8)

Re
∂uD

∂t
=

[
−
(
∂P

∂x

)
ss

−
(
∂τxy

∂y

)
ss

+ ρ gx

]
+

[
−
(
∂P

∂x

)
D

−
(
∂τxy

∂y

)
D

]
, (9)

We

(
∂τxx

∂t

)
D

=

[
−(τxx)ss + 2(τxy)ss We

∂uss

∂y

]
+

[
−(τxx)D + 2(τxy)D We

∂uD

∂y

]
, (10)

We

(
∂τxy

∂t

)
D

=

[
−(τxy)ss −

(
∂uss

∂y

)]
+

[
−(τxy)D −

(
∂uD

∂y

)]
. (11)

The boundary conditions are given by

uD(y = 0, t) = Λ cos (Ωt); uss(y = 0) = 0, (12)

and vanishing of shear stress at the free surface yields the equation

τxy,ss(y = d) = τxy,D(y = d, t) = 0. (13)

The steady part of the base flow solution can be obtained analytically:

uss = 2y − y2,

τxx,ss = −8We(1− y)2; τyx,ss = 2(y− 1),

τyy,ss = 0.

 (14)

To solve the time-dependent part of the base flow the dependent variables have been
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discretized as follows:

uD(t, y) =

N+1∑
i=1

ai(t)Ti(y), τij,D(t, y) =

N+1∑
i=1

bi(t)Ti(y). (15)

The spatial discretization is performed by using the Chebyshev-tau method described
in detail in our earlier publications (Ganpule & Khomami 1998, 1999a, b; Huang &
Khomami 2000). For the equation of motion, N̄ = N − 2 (i.e. N̄ is the number of
coefficients retained), and for each component of the constitutive equation, N̄ = N.
For the UCM model this method of discretization yields a (4N + 4) by (4N + 4)
coefficient matrix. Temporal discretization has been performed using the finite dif-
ference technique, specifically a first-order forward difference method.

2.3. Perturbation flow

For the constitutive equation used in this study Squire’s theorem is valid. However,
the extension of Squire’s theorem (Talpa & Bernstein 1970) to time-dependent flows
has not been demonstrated. As a result, we have performed a few calculations
with three-dimensional disturbances. Our limited computations demonstrated the
validity of this theorem. However, a much more extensive study is required in
order to prove the extension of Squire’s theorem to time-dependent viscoelastic
flows. Considering the tremendous computational effort required to perform three-
dimensional analyses, we have assumed (based on our limited computations) that the
extension of Squire’s theorem to time-dependent viscoelastic flows is valid. Hence,
we have only considered the stability of the flow to two-dimensional disturbances.
The procedure for performing linear stability analysis in the presence of dynamic
modulation is similar to that for steady base-state flows with the exception that the
perturbation vector Zp is defined as follows:

Zp = [u′D, v
′
D, p

′
D, τ

′
ij,D] = [UD(y, t),VD(y, t), fD(y, t),Fij,D(y, t)] exp (iαx). (16)

The linear stability equations are derived by substituting equation (16) into the
governing equations and keeping only the terms that are linear with respect to
the perturbation quantities. To reduce the number of variables, the linear stability
equations are recast in terms of the perturbation stream function Ψ defined as

Ψ = φ(y, t) exp (iαx), (17)

where

u′ =
∂Ψ

∂y
and v′ = −∂Ψ

∂x
. (18)

In turn the pressure terms in the x- and y-components of the linearized equation of
motion are eliminated by cross-differentiation and the stability governing equations
are obtained:

Re
∂

∂t
(Lφ) = −iαRe

(
uLφ− ∂2u

∂y2

)
+ iα

(
∂Fyy

∂y
− ∂Fxx

∂y

)
−
(
α2 +

∂2

∂y2

)
Fxy, (19)

We
∂Fxx

∂t
= −Fxx −We

{
iαUFxx − iα

∂τxx

∂y
φ− 2

[
iατxx

∂ϕ

∂y
+ τxy

∂2ϕ

∂y2
+
∂U

∂y
Fxy

]}

−2iα
∂ϕ

∂y
, (20)
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We
∂Fxy

∂t
= −Fxy −We

{
iαUFxy − iα

∂τxy

∂y
φ− α2τxxφ− ∂U

∂y
Fyy

}
−
(
∂2φ

∂y2
+ α2φ

)
,

(21)

We
∂Fyy

∂t
= −Fxy + 2We α2τxyφ− iαUWe Fyy + 2iα

∂φ

∂y
, (22)

where

L = (∂2/∂y2 − α2).

The boundary conditions for the perturbation flow are as follows:
no slip at the solid boundary

φ = 0 and
dφ

dy
= 0; (23)

and balance of tangential and normal stresses at the free surface (i.e. at y = 1):

Fxy +
dτxy
dy

hs − iα(τxx − τyy)hs = 0, (24)

Re
∂2φ

∂t∂y
= iαRe

(
φ

dU

dy
−U dφ

dy

)
− iα(Fxx − Fyy)− ∂Fxy

∂y
− iα(cot β + α2S)hs. (25)

In the above equations, the free-surface position can be expressed as

∂hs

∂t
= −iαφ− iαU hs,

where hs denotes the amplitude of free-surface deviation from its unperturbed position.

2.4. Solution procedure

The dominant mode of the instability can be due to disturbances of arbitrary wave-
length. Hence, the eigenvalue problem constituted by the stability governing equations
must be solved numerically. The numerical method used is once again the multi-
domain spectral-tau method that we have shown to provide an accurate solution to
this class of problems (Ganpule & Khomami 1998, 1999a, b; Huang & Khomami
2000). Specifically, the dependent variables are expanded in terms of Chebyshev
polynomials with time-dependent coefficients, ai(t):

φ(t, y) =

N+1∑
i=1

ai(t)Ti(y); Fxy(t, y) =

N+1∑
i=1

a3(N+1)+i(t)Ti(y),

Fxx(t, y) =

N+1∑
i=1

aN+1+i(t)Ti(y); Fyy(t, y) =

N+1∑
i=1

a2(N+1)+i(t)Ti(y).

 (26)

After substituting the above quantities into the governing equations and boundary
conditions (i.e. equations (19)–(25)), one obtains the stability governing equations that
can be written as

Q
da(t)

dt
= Pa(t) (27)

where Q and P are coefficient matrices (i.e. [4(N + 1) + 1] by [4(N + 1) + 1]), and
a is a vector that contains the time-dependent expansion coefficients. Equation (27)
constitutes a time-dependent eigenvalue problem. Since at low modulation frequencies
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it is very difficult to get accurate results with first-order time integration schemes, we
have selected the fourth-order Runge–Kutta method to perform the time integration.
It should be noted that because of the nature of boundary conditions (i.e. not all
variables are represented in all the boundary conditions), all the entries of some of the
rows of the Q matrix are zero (i.e. this matrix is singular). To remedy this situation, we
have chosen to explicitly rewrite the boundary conditions in terms of the expansion
coefficients and by a process of elimination remove the rows that contain only zeros.
This procedure is illustrated below.

(i) No slip at the solid wall:

dφ

dy
= 0,→

N+1∑
i=1

ai
∂Ti(ȳ = −1)

∂y
= 0. (28)

φ = 0,→
N+1∑
i=1

aiTi(ȳ = −1) = 0. (29)

Hence, combining equations (28) and (29) a1 and a2 can be written in terms of the
other coefficients as follows:

a1 =

N+1∑
i=3

[
T2(ȳ = −1)

∂T2(ȳ = −1)/∂y

∂Ti(ȳ = −1)

∂y
− Ti(ȳ = −1)

]
ai, (30)

a2 = − 1

∂T2(ȳ = −1)/∂y

N+1∑
i=3

∂Ti(ȳ = −1)

∂y
ai. (31)

(ii) The tangential stress balance at the free surface (y = 1)

Fxy +
dτ̄xy
dy

h̄s − iα(τ̄xx − τ̄yy)h̄s = 0. (32)

Therefore,
N+1∑
i=1

a3(N+1)+iTi(ȳ = 1) +
dτ̄xy
dy

h̄s − iα(τ̄xx − τ̄yy)h̄s = 0. (33)

Hence, utilizing equation (33) a3(N + 1) + 1 can be written in terms of the other
expansion coefficients as follows:

a3(N+1)+1 = −
N+1∑
i=2

a3(N+1)+iTi(ȳ = 1)−
[

dτ̄xy
dy

h̄s − iα(τ̄xx − τ̄yy)h̄s
]
. (34)

Following this procedure equation (27) can be written as

Q ′
da

dt
= P ′a (35)

where Q ′ and P ′ are [4(N + 1) + 1− 3] by [4(N + 1) + 1− 3] non-singular matrices.
Hence, matrix Q ′ can be inverted (the matrix inversion has been performed using
subroutines zgetrf and zgetri from the public website netlib), and equation (35) can
be written as

Q ′
da

dt
= P ′a→ da

dt
= A(t)a, (36)

where a = (a1, a2, . . . , a4(N+1), h̄s), A(t) = (Q ′−1P ′).
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Equation (36) can be easily integrated forward in time. Since A(t) is a time-
periodic matrix, the disturbance amplitude could grow or decay during one cycle of
modulation. Therefore, one needs to develop a consistent criterion for determining the
effect of dynamic modulation on the stability of the flow over one modulation cycle.
To accomplish this, we have used Floquet theory that allows one to determine whether
a disturbance on average grows or decays over one modulation cycle. Specifically,
since the modulations considered in this study are time periodic, Floquet theory
clearly shows that there must exist a constant matrix F , such that for all t (Ioos &
Joseph 1990)

X (t+ T ) = FX (T ), (37)

where T is the modulation period, and X is the fundamental solution matrix satisfying

dX

dt
= A(t)X . (38)

In turn, the Floquet exponents which determine the average growth or decay of a
disturbance over a cycle can be determined as follows:

λi =
1

T
ρi, (39)

where ρi are the eigenvalues of the F matrix (i.e. the QR algorithm is used to
determine these eigenvalues), and λi are the Floquet exponents. In turn, the stability
of the flow is determined by examining λi (i.e. the flow is linearly stable if the real
part of λi is negative; if the real part of λi is positive, the flow is unstable. Otherwise,
it is neutrally stable).

To apply Floquet theory to the problem at hand, one needs to determine matrix F .
To determine this matrix, equation (36) is integrated over a period of modulation. It
should be noted that,

X (T ) = FX (0), (40)

where X (0) can be chosen arbitrarily without loss of generality; hence we have
chosen X (0) = I , where I is the unit tensor. To ensure the accuracy of our hybrid
time-integration/eigenvalue scheme we have performed extended validation studies
with various A matrices. In all cases, accurate results were obtained by both the
fourth-order Runge–Kutta (RK4) method as well as the first-order Euler method
(see table 1 for representative results). However, in all cases it was observed that the
first-order Euler method requires tremendously small time increments to provide an
accurate solution. Hence throughout this study the RK4 method has been used in
the analyses.

Clearly the above procedure (i.e. time integration to generate matrix F combined
with determination of all the eigenvalues of matrix F ) can also be used to deter-
mine the stability of flows in the absence of dynamic modulation. Specifically, this
is accomplished by integration of equation (36) forward in time and evaluation of
the eigenvalues of the coefficient matrix at long times. To examine the accuracy of
our hybrid numerical technique, we have examined the linear stability of viscoelastic
flows down an inclined plane in the absence of dynamic modulation using both
the combined time-integration eigenvalue analysis strategy and classical eigenvalue
analysis. The results obtained from the generalized eigenvalue problem (GEVP) (the
GEVP results were obtained using the same procedure as our earlier studies (Ganpule
& Khomami 1998, 1999a, b; Huang & Khomami 2000)) and the hybrid scheme have
been compared. Table 2 shows a comparison of free surface-eigenvalues obtained
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Figure 2. The spectrum of eigenvalues for one-layer UCM fluid down an inclined plane, Re = 0.01,
β = 11.5◦, We = 1, α = 0.01, S = 0: +, spectrum obtained based on the GEVP; ◦, spectrum
obtained by using the hybrid time-integration eigenvalue technique.

∆t Ω τ Analytical Computational
(time step) (frequency) (period) results results

π/10 1 2π λ = 0 λ = −2.68× 10−4

λ = 1 λ = 0.999893194
π/50 1 2π λ = 0 λ = −6.30× 10−8

λ = 1 λ = 0.999999783
π/100 1 2π λ = 0 λ = −1.98× 10−9

λ = 1 λ = 0.999999986

Table 1. A comparison between results obtained analytically and those of the fourth-order
Runge–Kutta (RK4) method.

dX

dT
= AX where A =

[
1 1
0 h(t)

]
and h(t) =

[cos (t) + sin (t)]

[2 + sin (t)− cos (t)]
; λ =

1

τ
ln(ρ).

The ρ are the eigenvalues of A; the λ are the Floquet exponents.

by the hybrid time-integration/eigenvalues analysis scheme to the generalized eigen-
value analysis. The excellent agreement between these results clearly demonstrates
the accuracy of the hybrid scheme used in this study. A more stringent test of the
accuracy of the combined time-integration/eigenvalue scheme would involve compar-
ing the spectrum of eigenvalues obtained by both techniques. Figure 2 shows such
a comparison: clearly the spectrum obtained based on the combined time-dependent
integration/eigenvalue method is identical to the spectrum of eigenvalues obtained
from a generalized eigenvalue analysis. Moreover, it should be noted that the free-
surface mode is well separated from the continuous spectrum (i.e. the continuous
spectrum is located at Im (αc) ∼ −1/We (Huang & Khomami 2000)). This free-
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Figure 3. The effect of dynamic modulation on the free-surface instability of one-layer Newtonian
flow down an inclined plane, β = 11.5◦, S = 0. (a) Neutral stability diagram Ω = 1; S denotes stable,
U denotes unstable; (b) growth/decay rate, α = 0.01, Re = 1.0; (c) growth/decay rate, α = 0.1,
Re = 10.

β GEVP Time Integration
(deg.) We (λ = −iαc) (Λ = 0, Ω = 1, T = 2πΩ)

11.5 0.5 −2.61677× 10−4 – 2.0× 10−2 i −2.61584× 10−4 – 1.99972× 10−2 i
1 −1.95010× 10−4 – 2.0× 10−2 i −1.94928× 10−4 – 1.99948× 10−2 i
2 −6.16770× 10−5 – 2.0× 10−2 i −6.20004× 10−5 – 1.99852× 10−2 i

78.5 0.5 5.36307× 10−5 – 2.0× 10−2 i 5.35982× 10−5 – 1.99972× 10−2 i
1 1.20297× 10−4 – 2.0× 10−2 i 1.20164× 10−4 – 1.99948× 10−2 i
2 2.5363× 10−4 – 2.0× 10−2 i 2.52836 × 10−4 – 1.99852× 10−2 i

Table 2. Comparison of free-surface eigenvalues obtained by time-integration (i.e. based on the
Floquet exponents) and from the GEVP for one-layer UCM flow down an inclined plane. Re = 0.01,
α = 0.01, S = 0. λ is the Floquet exponent, c is the eigenvalue obtained from the GEVP. Λ is the
amplitude; Ω is the frequency and T is the period of the modulation.

surface mode is the only mode that will be discussed in the remainder of this
paper.

3. Results and discussion
The stability of one-layer flow down an inclined plane is a function of the inclination

angle, Re, S,We, and the disturbance wavenumbers. To examine the effect of dynamic
modulation on the stability characteristics of this class of flows, we have performed
a comprehensive linear stability analysis of Newtonian and viscoelastic flow down
an inclined plane. Of particular interest is the relationship between the modulation
frequency and Re and We.
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3.1. Newtonian flows

Utilizing the above-mentioned numerical technique, the linear stability of dynamically
modulated one-layer Newtonian flow down an inclined plane has been examined. Since
the parameter space is relatively large, we have concentrated on the long-wave regime
since the most dangerous disturbances for this class of flows are long wave. Figure
3(a) shows the stability contour in the presence of dynamic modulation. Clearly, at
low to moderate Re the effect of dynamic modulation on the stability characteristic
of one-layer Newtonian flows is not very significant. Figures 3(b) and 3(c) depict
the influence of inertia on the role of dynamic modulation. Clearly, as the Reynolds
numbers increased, the influence of dynamic modulation on the stability of the flow
is enhanced. This can be rationalized by the fact that in the limit of zero Reynolds
number, dynamic modulation cannot influence the stability of Newtonian flows down
an inclined plane since the problem is invariant under arbitrary rigid motions of
the reference frame (i.e. the problem is Euclidean invariant). At low Re where the
influence of dynamic modulation is insignificant the most dominant modulation
frequency does not scale with the inertial time scale (i.e. 1/Re). It should be noted
that these conclusions are consistent with the results of Lin & Chen (1998). However,
at higher Reynolds numbers, where dynamic modulation destabilizes the flow, the
frequency of modulation corresponding to the maximum destabilization occurs in the
vicinity of the inertial time scale (i.e. 1/Re). Moreover, the extent of destabilization
scales with the amplitude of modulation. It should be noted that these trends are
independent of the inclination angle.

Overall, for reasons mentioned above, parallel superposition modulations (i.e.
modulation of the plane surface parallel to the mean flow) cannot effectively be
used to stabilize or destabilize free-surface disturbance in one-layer Newtonian flows
down an inclined plane at low Re. Although, the effect of parallel superposition
modulations are more pronounced at moderate Re, significant destabilization is only
observed for very large modulation amplitudes.

3.2. Viscoelastic flows

Figure 4 shows the stability contour in the presence of dynamic modulation for one-
layer UCM flow down an inclined plane. Clearly, the effect of dynamic modulation
on the stability characteristics of viscoelastic flows is much more pronounced than
on those of Newtonian flows. Hence, we have chosen to systematically investigate the
stability of one-layer UCM flows down an inclined plane in the presence of parallel
superposition of modulation.

Figures 4(b) and 4(c) demonstrate the effect of dynamic modulation on the free-
surface instability at various amplitudes and frequencies of modulation in the limit
of vanishing Re. At small inclination angles (i.e. β = 11.5◦) and in the limit of long
waves, it is observed that higher modulation frequencies tend to destabilize free-surface
disturbances while lower frequencies have the opposite effect. Moreover, the extent
of stabilization or destabilization is proportional to the amplitude of the modulation
(see figure 4b). This trend also holds in the limit of O(1) waves (see figure 4c). Figure
5 shows the effect of dynamic modulation at a higher inclination angle (β = 78.5◦).
Clearly, increasing the inclination angle does not change the general stabilizing or
destabilizing effects of dynamic modulation.

To examine the dependence of the most effective modulation frequencies on the
elasticity of the fluid, we have examined a wide range of flows with different We. A
representative set of results in the limit of vanishing Re is shown in figure 6. As shown
by this figure the dominant stabilizing frequency is reduced as the We is increased. Our
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computations also show that this trend is independent of inclination angle and the
stabilization/destabilization is relatively insensitive to the disturbance wavenumber
(i.e. in the long and O(1) wave limit). Moreover, the extent of stabilization is shown
to be proportional to the amplitude of modulation.

Inertia also plays a significant part in determining the role of dynamic modulation
on the stability of viscoelastic flows down an inclined plane. In fact, at O(1) Re,
the role of dynamic modulation on the stability of one-layer UCM flow down an
inclined plane is very different from that at the low-Re limit. Figure 7 shows that for
O(1) Re lower-frequency modulations are destabilizing while intermediate-frequency
modulations have a stabilizing effect. It should be noted that the destabilizing or
stabilizing effect of dynamic modulation is proportional to the amplitude of the
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modulation. Moreover, similarly to the low-Re limit, changing the inclination angle
does not alter the influence of dynamic modulation on the stability of the free
surface. In fact, as Re is progressively increased the above trends remain the same,
with the only difference that the destabilization occurs at lower and lower frequencies.
Overall, these analyses clearly suggest that for O(1) Re, the combination of dynamic
modulation and inertia leads to destabilization at low modulation frequencies. In fact,
this is very similar to what was observed in Newtonian flows.

As shown above, the influence of low-frequency dynamic modulation on the stability
of viscoelastic flows down an inclined plane is very complex; specifically, the fact that
low-frequency modulation stabilizes the flow at vanishing Re while destabilizing the
flow at higher Re (i.e. in the long and O(1) wave limit) clearly shows that modulation
of the flow in this frequency range leads to a competition between elastic and inertial
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forces. To better understand the relationship between the most dominant frequencies
and Re and We, we have performed extensive computations. The results of these
computations are summarized in figure 8. Figures 8(a) and 8(b) clearly show that for
finite-Re flows the most dominant destabilizing frequency (i.e. Ωmin) scales with 1/Re
while the most stabilizing frequencies scale with 1/ReWe. In case of vanishing Re,
the most stabilizing frequencies scale with 1/We as shown by figures 8(c) and 8(d). It
should be noted that these trends are independent of the inclination angle.

To better understand the mechanism by which dynamic modulation influences
the stability of one-layer viscoelastic flow down an inclined plane, the frequency
of the free-surface wave as a function of modulation frequency has been examined.
In the limit of long waves, increasing the modulation frequency will first decrease the
frequency of the perturbed interface and then enhance it (see figure 9). This suggests
that stabilization attained by dynamic modulation is a consequence of reducing the
frequency of the free-surface wave. In fact, if the most dominant frequency (in terms of
reducing the frequency of the free-surface wave) is determined, one observes that this
frequency also scales with 1/We at vanishing Re irrespective of the inclination angle.

As mentioned throughout this section, dynamic modulation could have a stabilizing
or destabilizing effect on the free-surface stability of one-layer UCM flows down an
inclined plane. However, from a practical point of view one needs to examine the range
of amplitudes and frequencies that can be used to stabilize the free-surface instability
under particular operating conditions. To illustrate this point, we have selected a case
where the flow is unstable in the limit of long waves (see figure 10). Clearly different
combinations of dynamic modulation amplitudes and frequencies can be used to
stabilize the free surface. Indeed, frequencies of O(1/We) can be used to stabilize
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the flow and the stabilizing influence of dynamic modulation is proportional to the
amplitude of the modulation. However, relatively large modulation amplitudes have to
be used to achieve significant stabilization with the parallel superposition modulation
technique. This might limit the usefulness of this strategy in industrial applications.

3.3. Stability mechanism

The mechanism of instability of one-layer Newtonian flows down an inclined plane
has been previously examined by Kelly et al. (1989) based on a rigorous energy
analysis and by Smith (1990) via examination of the eigenfunctions. Their results
indicate that the free-surface instability is caused by the perturbation shear stress
at the free surface. Specifically, the instability is due to the competition between
the stabilization provided by the hydrostatic pressure and the inertial destabilization.
Moreover, Kelly et al. (1989) have shown that the perturbation shear stress drives
a perturbation vorticity that can either enhance or reduce the deflection of the free
surface from its unperturbed position. In fact, it was demonstrated that the stability
of the free surface can be determined by examining the phase shift between the
disturbance vorticity and the free-surface shape. Specifically, if the maximum value of
the disturbance vorticity at the free surface lags the peak of the perturbed free surface,
the disturbance vorticity will induce an upward motion of the free surface resulting
in growth of the disturbance (see figure 11a). Hence, the critical condition for the
instability corresponds to a phase difference Φ = 0 and for Φ > 0 the flow is stable.

Huang & Khomami (2000) have examined the mechanism of instability of one-layer
viscoelastic flows down an inclined plane based on rigorous energy analysis. Their
results indicate that the coupling between the base flow and perturbation velocities
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and the polymeric stresses and their gradients at the free surface is the driving force
for the instability. As mentioned above, the mechanism of the instability can also
be investigated by a careful examination of the eigenfunctions. For purely elastic
instabilities (i.e. Re = 0), the linearized equation of motion for the perturbation
variables are given by (note in these equations the perturbation pressure has not been
eliminated)

x-component 0 = −iαp′ −
[
iαFxx +

∂Fxy

∂y

]
, (41)

y-component 0 = −∂p
′

∂y
−
[
iαFxy +

∂Fyy

∂y

]
. (42)

The boundary conditions are given by

u′ = (0) = 0, v′(0) = 0, at y = 0, (43)

Fxy +
dτxy
dy

h′ = 0, at y = 1, (44)

p′ + Fyy +
dp′

dy
h′ = 0, at y = 1, (45)

v′ = iα(U − c)h′, at y = 1. (46)

Solving the above set of equations in the limit of long-wave disturbances, (i.e. α→ 0)
one obtains

F0
xy = −∂u0

∂y
, F0

yy = 0, (47)
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∂2u0

∂y2
= 0, u0(0) = 0,

∂u0(1)

∂y
= 2, (48)

∂p0

∂y
= 0, p0(1) = 2 cot β, (49)

u0(y) = 2y, v0 = 0, p0(y) = 2 cot β. (50)

Clearly one needs to proceed to the next-order expansions in α in order to determine
the stability of the system. At order α, the following equations are obtained:

∂v1

∂y
+ iu0 = 0, v1(0) = 0, c0 = U(1) + iv1(1), (51)

v1(y) = −iy2, c0 = 2, (52)

0 = −ip0 − iF0
xx −

∂F1
xy

∂y
, (53)

F0
xx = −2F0

xy

(
dU

dy

)
− 2τxy

∂u0

∂y
, (54)

F1
xy = −∂u1

∂y
+ i

{
2WeF1

yy

(
dU

dy

)
− (U − c0)F

0
xy −We

dτxy
dy

v1

}
, (55)

∂2u1

∂y2
= ip0 − iWe

[(
dU

dy

)(
∂u0

∂y

)
− u0

d2U

dy2

]
, (56)

u1(0) = 0,
∂u1

∂y
= 0, (57)

u1(y) = ip0

(
1
2
y2 − y

)
− iWe(2y2 − 4y). (58)

Once again, one needs to proceed to a higher-order expansion to determine the critical
conditions for linear stability. At order α2, the following equations are obtained:

∂v2

∂y
+ iu1 = 0, v2(0) = 0, c1 = iv2(1), (59)

v2(y) = cot β

(
1
3
y3 − y2

)
− 2

3
We y3 + 2We y2, (60)

c1 = i(− 2
3

cot β + 4
3
We). (61)

Therefore, using equation (61), the Wecrit above which the system is linearly unstable
can be determined:

Wecrit = 1
2

cot β. (62)

The results of the analysis at O(α) shows that the balance between the hydrostatic
pressure due to the displacement of the interface and elastic forces determine the
sign of the perturbation velocity in the mean flow direction (see equation (58)).
In fact, an examination of equation (56) shows that there are two separate elastic
contributions. The first elastic contribution, i.e. −We [(dU/dy)(∂u0/∂y)], is due to the
coupling between the base-flow shear stress and the perturbation velocity gradient.
Since (dU/dy) and (∂u0/∂y) are always positive in the domain, this elastic term
is always negative and is proportional to We. The second elastic contribution, i.e.
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We(u0 d2U/dy2), is due to the coupling between the perturbation velocity and the
base-flow shear stress gradient. Since (d2U/dy2) is always negative and u0 is always
positive, this term is also always negative in the domain. Hence, if one considers
a perturbed interface, the hydrostatic pressure term tends to push fluid away from
under the crest (see figure 11b) while the elastic terms tend to introduce fluid under
the crest (see figures 11c and 11d). Therefore, when the contribution of the elastic
terms that are proportional to We exceed a certain critical value the flow becomes
unstable.

The magnitude of each term can be examined by measuring the power associated
with it. The average power is defined

Z =

{∫ 1

0

p0 −We

[(
dU

dy

)(
∂u0

∂y

)
− u0

d2U

dy2

]}
dy = 2 cot β − 4We. (63)

Hence, in the limit of long waves, elastic effects are always destabilizing and pro-
portional to We, while hydrostatic pressure is stabilizing. In addition, the first (i.e.
−We[(dU/dy)(∂u0/∂y)]), and the second (i.e. We(u0d

2U/dy2)), elastic contributions
have the same magnitude. It should be noted that the results of the above analysis
is in full agreement with the rigorous energy analysis result of Huang & Khomami
(2000).

To examine the effect of dynamic modulation on the mechanism of stability of
both Newtonian and viscoelastic flows down an inclined plane we have performed an
energy analysis using the procedure developed in our earlier study. The details of the
energy analysis are given in our earlier paper (Huang & Khomami 2000), hence they
are not reproduced here.

The energy analysis has been performed based on the Floquet exponents. The results
of these analyses show that the mechanism of the instability in both Newtonian and
viscoelastic flows is unchanged in the presence of dynamic modulation. That is the
main driving force for the Newtonian inertial instability is the perturbation shear
stresses at the free surface while the elastic destabilization mechanism in the limit
of vanishing Re is due to the coupling between the base flow and the perturbation
velocity and stresses and their gradients at the free surface.

Although, dynamic modulation does not alter the mechanism of the instability
it clearly influences the onset conditions for the instability. To illustrate this point,
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one can express the perturbation velocities generated at the free surface in terms
of perturbation vorticities. In turn, as shown by Kelley et al. (1989) the phase
difference between the perturbation vorticity at the free surface and the motion of
the free surface can be used to illustrate the effect of dynamic modulation on the
stability characteristics of the flow. Figure 12 depicts the phase difference between
the perturbation vorticity and the free-surface motion. Clearly, the stabilizing or
destabilizing influence of dynamic modulation is a direct consequence of altering the
plane difference between the motion of the free surface and the perturbation vorticity
at the free surface that exists in the absence of dynamic modulation. Specifically,
when Ω < 16 dynamic modulation reduces Φ, hence the flow is stabilized while for
Ω > 16 the opposite trend is observed.

4. Conclusions
In this study, the effect of dynamic modulation on the stability characteristics of one-

layer Newtonian and viscoelastic fluids down an inclined plane has been theoretically
examined. It has been demonstrated that parallel superposition of modulation can be
used to stabilize or destabilize this class of flows. Specifically, it is shown that the effect
of dynamic modulation on the stability characteristics of viscoelastic flows down an
inclined plane is more pronounced than that of Newtonian flows with O(1)Re.

The dependence of the most-dominant modulation frequencies on Re and We
has also been examined. It has been shown that for Newtonian flows (in the limit
of long waves) low-frequency modulations are destabilizing and the most dominant
frequency scales with 1/Re. However, for viscoelastic flows in the limit of vanishing
Re, it has been shown that low-frequency modulations are stabilizing and the most
dominant modulation frequency scales with 1/We. In the case of viscoelastic flows
with finite Re, it is observed that the most destabilizing frequencies scale with 1/Re
while the most stabilizing frequencies scale with 1/ReWe. These results clearly depict
the competition between the elastic and inertial forces in the presence of dynamic
modulation. Moreover, these scalings are independent of the inclination angle and the
wavenumber (in the limit of long and O(1) waves). In addition, it has been shown that
for viscoelastic flows the stabilizing or destabilizing influence of dynamic modulation is
proportional to the amplitude of the modulation. However, relatively large modulation
amplitudes are required to achieve significant stabilization/destabilization with the
parallel superposition modulation technique.

Finally, it is shown that the mechanism of both purely elastic and inertial instabilities
in flows down inclined planes is unchanged in the presence of dynamic modulation. In
fact, our analyses indicate that modulations of the solid surface greatly influence the
frequency of the free-surface wave as well as its phase difference with the disturbance
vorticity at the free surface.

This work has been supported in part by a grant from National Science Foundation
CTS-9612499.

REFERENCES

Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554.

Bird, R. B., Curtiss, C. F., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids,
vols 1 and 2. Wiley.

Ganpule, H. K. & Khomami, B. 1998 A theoretical investigation of interfacial instabilities in the



Role of dynamic modulation in viscoelastic flow 233

three layer superposed channel flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 79,
315.

Ganpule, H. K. & Khomami, B. 1999a An investigation of interfacial instabilities in the superposed
channel flow of viscoelastic fluids. J. Non-Newtonian Fluid Mech. 81, 27.

Ganpule, H. K. & Khomami, B. 1999b The effect of transient viscoelastic properties on interfacial
instabilities in superposed pressure driven channel flows. J. Non-Newtonian Fluid Mech. 80,
217.

Grosch, C. E. & Salwen, H. 1968 The stability of steady and time-dependent plane Poiseuille flow.
J. Fluid Mech. 34, 177.

Gupta, A. S. 1967 Stability of a visco-elastic liquid film flowing down an inclined plane. J. Fluid
Mech. 28, 17.

Huang, C. & Khomami, B. 2000 Role of fluid elasticity on stability of multilayer flows down an
inclined plane. Rheol. Acta (submitted).

Ioos, G. & Joseph, D. D. 1990 Elementary Stability and Bifurcation Theory. Springer.

Joo, Y. L. & Shaqfeh, E. S. G. 1991 Viscoelastic Poiseuille flow through a curved channel: a new
elastic instability. Phys. Fluids A 3, 1691.

Joo, Y. L. & Shaqfeh, E. S. G. 1992a A purely elastic instability in Dean and taylor-dean flow.
Phys. Fluids A 4, 524.

Joo, Y. L. & Shaqfeh, E. S. G. 1992b The effects of inertia on the viscoelastic Dean and Taylor–
Couette flow instabilities with application to coating flows. Phys. Fluids A 4, 2415.

Kelly, R. E., Goussis, D. A., Lin, S. P. & Hsu, F. K. 1989 The mechanism for surface wave
instability in film flow down an inclined plane. Phys. Fluids 1 819.

Kerczek, C. H. von 1982 The instability of oscillatory plane Poiseuille flow. J. Fluid Mech. 116, 91.

Lin, S. P. 1967 Instability of a liquid film flowing down an inclined plane. Phys. Fluids 10, 308.

Lin, S. P. & Chen, J. N. 1998 The mechanism of surface wave suppression in film flow down a
vertical plane. Phys. Fluids 10, 1787.

Lin, S. P., Chen, J. N. & Woods, D. R. 1996 Suppression of instability in a liquid film flow. Phys.
Fluids 8, 3247.

McKinley, G. H., Pakdel, P. & Oztekin, A. 1996 Rheological and geometric scaling of purely
elastic flow instabilities. J. Non-Newtonian Fluid Mech. 67, 19.

Ramanan, V. V. & Graham, M. D. 2000 Stability of viscoelastic shear flows subjected to parallel
flow superposition. Phys. Fluids 12, 2702–2710.

Ramanan, V. V., Kumar, K. A. & Graham, M. D. 1999 Stability of viscoelastic shear flows subjected
to steady or oscillatory transverse flow. J. Fluid Mech. 379, 285.

Shaqfeh, E. S. G. 1996 Purely elastic instabilities in viscoelastic flows. Ann. Rev. Fluid Mech. 28,
129.

Shaqfeh, E. S. G., Larson, R. G. & Frederickson, G. H. 1989 The stability of gravity driven
viscoelastic film-flow at low moderate Reynolds number. J. Non-Newtonian Fluid Mech. 31, 87.

Smith, M. K. 1990 The mechanism for the long-wave instability in thin liquid film. J. Fluid Mech.
217, 469.

Talpa, G. & Bernstein, B. 1970 Stability of a relaxation-type viscoelastic fluid with slight elasticity.
Phys. Fluids 31, 565.

Yih, C. S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321.

Yih, C. S. 1968 Instability of unsteady flows or configurations. Part 1. Instability of a horizontal
liquid layer on an oscillating plane. J. Fluid Mech. 31, 737.


